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1Heisenberg Research Group of Computational Neuroscience - Modeling Neural Network Function, Department of
Animal Physiology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany

2Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52425 Jülich,
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Abstract

Detailed neural network models of animal locomotion are important means to understand the underly-
ing mechanisms that control the coordinated movement of individual limbs. Daun-Gruhn and Tóth, Jour-
nal of Computational Neuroscience 31 (1):43–60 (2011) constructed an inter-segmental network model of
stick insect locomotion consisting of three interconnected central pattern generators (CPGs) that are as-
sociated with the protraction-retraction movements of the front, middle and hind leg. This model could
reproduce the basic locomotion coordination patterns, such as tri- and tetrapod, and the transitions
between them.

However, the analysis of such a system is a formidable task because of its large number of variables
and parameters. In this study, we employed phase reduction and averaging theory to this large network
model in order to reduce it to a system of coupled phase oscillators. This enabled us to analyze the
complex behavior of the system in a reduced parameter space.

In this paper, we show that the reduced model reproduces the results of the original model. By
analyzing the interaction of just two coupled phase oscillators, we found that the neighboring CPGs
could operate within distinct regimes, depending on the phase shift between the sensory inputs from the
extremities and the phases of the individual CPGs. We demonstrate that this dependence is essential
to produce different coordination patterns and the transition between them. Additionally, applying
averaging theory to the system of all three phase oscillators, we calculate the stable fixed points - they
correspond to stable tripod or tetrapod coordination patterns and identify two ways of transition between
them.

Keywords: Central pattern generators; Inter-segmental coordination; Phase oscillator model; Stepping
patterns; Transition; Speed control; 6-legged locomotion

1 Introduction

Insect walking has been the subject of many systematic investigations. To generate stable movements at
different walking speeds and in various environments, a high degree of spatial and temporal coordination
between the legs and body segments of an animal is needed.

One way to study the underlying mechanisms of coordinated walking is to build an appropriate model of
the walking system based on relevant experimental data. In this approach, it is widely accepted that on the
neural level, there are groups of interacting neurons, called central pattern generators (CPGs) that produce
rhythmic activity (Delcomyn, 1980; Roberts and Roberts, 1983; Büschges, 2005; Katz, 2016). This oscilla-
tory activity ultimately drives the muscles generating thereby rhythmic motor behavior. The coordinated
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movement is then achieved by mutual interaction of the CPGs, which also depends on the sensory feedback
from the legs (for a review on the stick insect see Büschges and Gruhn (2007)).

An advantage of a detailed neural network model is that it can simulate the behavior of the locomotor
system in various conditions and allows the analysis of the contribution of different functional elements of
the model to producing a given behavior. However, because of the large number of variables and parameters
of the system, it is a difficult task to investigate the model behavior by making use of analytical methods,
only.

One of the methods to simplify and analyze a network of oscillatory systems is phase reduction theory
(Guckenheimer and Holmes, 1983; Hoppensteadt and Izhikevich, 1997; Kuramoto, 1984). Using this method,
a network of oscillators, where every oscillator is a high-dimensional system, can be reduced to a network of
weakly coupled phase oscillators, where the state of every oscillator is described by just one phase variable.
This reduction is achieved by approximation of the phase of each oscillator in a small neighborhood of its
limit cycle. The result of the phase reduction is a model consisting of weakly coupled phase oscillators.

Due to their simplicity, coupled phase oscillators have been the first approach in many studies of animal
locomotion, such as the model of swimmeret system of the crayfish (Skinner et al., 1997), swimming of
lamprey (Cohen et al., 1982) and the model of coupled nonlinear oscillators of a hexapedal walking system
(Collins and Stewart, 1993). Furthermore, the phase reduction theory together with the averaging theorem
for weakly coupled oscillators (Guckenheimer and Holmes, 1983) was successfully used to reduce and analyze
models with large number of variables, such as the model of cockroach locomotion (Proctor and Holmes, 2010;
Proctor et al., 2010; Aminzare et al., 2018), the model of lamprey swimming (Massarelli et al., 2016), and
the swimmeret system of the crayfish (Jones et al., 2003; Zhang and Lewis, 2016). Moreover, the approach
of using coupled phase oscillators works well for systems with definite phase relations.

During locomotion, insects make use of a variety of walking patterns. Some of these patterns possess
some form of symmetry. For instance, coordination patterns with four legs simultaneously on the ground are
called tetrapod, whereas walking patterns with three legs on the ground at the same time tripod coordination
patterns (Graham, 1985). It is known that slowly walking insects prefer the tetrapod coordination pattern
to the tripod one, while fast walking insects have the opposite preference (Graham, 1985, 1972). Transition
between these coordination patterns happens at a large enough change in the walking speed (Grabowska
et al., 2012; Mendes et al., 2013).

To understand how coordination patterns are generated and stabilized, several models based on different
approaches were developed. In one group of studies, a model of six-legged locomotion was constructed using
certain rules of interaction between legs, obtained from behavioral experiments (Cruse, 1990; Dürr et al.,
2004; Schilling et al., 2013). In other studies, neuro-mechanical models were constructed using experimental
findings, such as a dynamic 3D-biomechanical model of the stick insect (Ekeberg et al., 2004; Von Twickel
et al., 2012), or a neuro-mechanical model of cockroach locomotion (Holmes et al., 2006; Kukillaya and
Holmes, 2007, 2009). As mentioned above, the latter model was reduced to one of coupled phase oscillators
(Proctor and Holmes, 2010; Proctor et al., 2010).

In a previous work (Daun-Gruhn and Tóth, 2011) an inter-segmental network model was constructed that
consisted of three cyclically interconnected CPGs. The CPGs generated the protraction-retraction rhythms
of the horizontal leg movements during walking. Experimental data were used from the stick insect for the
construction of the model. This model is an extension of that of Daun-Gruhn (2011). It is also the forerunner
of other, more detailed models (Tóth et al., 2013a,b; Grabowska et al., 2015; Tóth et al., 2015; Tóth and
Daun-Gruhn, 2016). More precisely, the model of Daun-Gruhn and Tóth (2011) comprises the CPGs of the
protractor-retractor motor systems of the ipsilateral front, middle, and hind leg. The CPGs are connected
via excitatory and inhibitory pathways, which are modulated by sensory feedback. The model can mimic
the tripod and tetrapod coordination patterns, and the transition between them. Moreover, in this model
two mechanisms controlling the transition were assumed: (i) via central drive, which controls the oscillatory
period of the CPGs, and (ii) via a phase-dependent control mechanism, that changes the phase differences
between the peripheral sensory signals and the oscillation of the segmental CPGs.

In the work presented here, we aimed at understanding the role of inter-segmental connections in, and
the mechanisms underlying, the generation of the different coordination patterns and the transition between
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them during six-legged walking. To this end, we transformed the equations of the original inter-segmental
network model to an equation system of phase oscillators by using the phase reduction theory and the
averaging theorem. As a result, the 12 ordinary differential equations (ODEs) of the original model (Daun-
Gruhn and Tóth, 2011) could be reduced to a system of 3 or 2 ODEs. The ODEs of phase variables could
still capture the key oscillatory properties of the original model. This helped us a great deal to analyze
the model of Daun-Gruhn and Tóth (2011) and to understand the role of the parameters of the system
in generation of the various coordination patterns. Moreover, using the results of this study, we intend to
perform a comparative investigation of locomotion models developed for different species of insects in the
future in order to extract common features of motor control in them.

The work is structured as follows. In the first section (Section 2), we identify the parts of the inter-
segmental network model of Daun-Gruhn and Tóth (2011) that are essential for further analysis by means
of the phase reduction method. In the Section 3, we introduce the phase reduction and the averaging theory
in their general form and apply them to an isolated CPG and to a CPG with external synaptic connections.
Then we derive the complete reduced system of coupled phase oscillators for the original model. The methods
of analysis and the specificity of our approach will be presented in Section 3.5. In Section 4, we start with the
analysis of a simpler model consisting of two coupled segmental CPGs in order to understand the properties
of the inter-segmental connection with respect to the hypothetical control variables (peripheral sensory
signals) of the model of Daun-Gruhn and Tóth (2011). Further, we demonstrate that the reduced system
of three coupled phase oscillators can reproduce the results of the original model, such as stable tri- and
tetrapod coordination patterns. Finally, we explain there the underlying mechanism of the transition between
coordination patterns suggested in Daun-Gruhn and Tóth (2011): via the change in the phase-dependent
control mechanism and by changing the oscillatory period of the CPGs.

2 Inter-segmental network model of insect locomotion

2.1 General scheme

The inter-segmental network model of Daun-Gruhn and Tóth (2011) is shown, in simplified form, in Fig. 1.
The network consists of three segments that correspond to the ipsilateral front, the middle and the hind leg,
respectively. Since Borgmann et al. (2007, 2009) found a weak neural connection between the contralateral
legs, it seems justified to neglect them in the model. Thus it includes the connection between ipsilateral legs
only. Influence from the contralateral side is neglected.

Each segment has a central pattern generator (CPG) that is associated with the protractor-retractor
muscles of the corresponding leg. The inter-segmental connections of the CPGs are modulated by peripheral
sensory signals at the sensory interneurons (SINFL, SINML, SINHL). The sensory signals are denoted in
Fig. 1 by yFL, yML, and yHL. The notations FL, ML, HL stand for front, middle and hind leg, respectively.
The sensory signals originate in the levator-depressor neuro-muscular system of the corresponding leg and
integrate several modalities of sensory information, i.e. position of the leg, ground contact or lift-off, and
loading or unloading of the leg. The synaptic connections on the sensory interneurons are effective only, if
sensory signals are also present at the same time.

The network, including the inter-segmental connections from pro- to meso-thoracic and from meso- to
meta-thoracic segmental CPGs has been constructed using the results of the experimental works in the
stick insect and locust (see the references in Daun-Gruhn and Tóth (2011)). The peripheral hypothetical
connection from meta- to pro-thoracic ganglion which provided stability of the oscillation of the system was
introduced by Daun-Gruhn and Tóth (2011).

2.2 The model of a single CPG

In the model, each CPG consists of two interneurons connected by inhibitory synapses. This type of model is
called half-center oscillator (Brown, 1914; Wang and Rinzel, 1992; Calabrese et al., 2003; Daun et al., 2009).
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Figure 1: Scheme of inter-segmental network model adapted from Daun-Gruhn and Tóth (2011). Only parts essential
for this paper are shown. Every CPG consists of two non-spiking interneurons, one of them is associated with the
protractor, the other with the retractor muscle. The retractor CPG neurons C1, C3, and C5 are inter-segmentally and
uni-directionally connected, the connections passing through the sensory interneurons SINFL, SINML, and SINHL.
Moreover, the inter-segmental connections are cyclic. Sensory input signals (yFL(t), yML(t), and yHL(t)) originate
from the levator-depressor neuro-muscular system of the corresponding leg and integrate several modalities of sensory
information. The sensory synaptic input to a CPG neuron from the sensory interneuron of the leg in the same segment
is inhibitory (Ii, blue lines), whereas that from the sensory interneuron of the leg in another, cyclically preceding,
segment is excitatory (Ie, red lines).

The CPG model consists of two non-spiking Hodgkin-Huxley-type neurons connected by mutually in-
hibitory synapses (see Fig. 2 (a)). The full set of equations of the CPG is:
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dV1

dt
= −

(

INaP1 + IL1 + Isyn1 + Iapp1
)

−
∑

j

Ij ,

dh1

dt
= (h∞(V1)− h1)/τ(V1),

Cm

dV2

dt
= −

(

INaP2 + IL2 + Isyn2 + Iapp2
)

,

dh2

dt
= (h∞(V2)− h2)/τ(V2),

(1)
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where INaP1 and INaP2 are slowly inactivating Na+ currents

INaP1 = gNaPm∞(V1)h1 ·
(

V1 − ENa

)

,

INaP2 = gNaPm∞(V2)h2 ·
(

V2 − ENa

)

,

IL1 and IL2 are leak currents

IL1 = gL
(

V1 − EL

)

, IL2 = gL
(

V2 − EL

)

,

Iapp1 and Iapp2 are the central driving currents

Iapp1 = gapp1
(

V1 − Eapp

)

, Iapp2 = gapp2
(

V2 − Eapp

)

.

Finally, the synaptic currents Isyn1 and Isyn2 between the CPG neurons are given as

Isyn1 = gsyns∞(V2)
(

V1 − Esyn

)

,
Isyn2 = gsyns∞(V1)

(

V2 − Esyn

)

.
(2)

The mutual synaptic connections between the CPG neurons are inhibitory. The inter-segmental synaptic
currents Ij and the details of the synaptic connections between CPGs will be discussed below.

All steady state values of the activation variables (m∞, h∞, s∞) are described by the following function:

z∞(V ) =
1

1 + exp
(

γz(V − Vhz)
) , (3)

where z is m,n, or s.
The time ”constant” τ , as a function of V , reads

τ(V ) =
1

ε

1

cosh
(

γτ (V − Vhτ )
) , (4)

where ε is small.
The actual synaptic activation s∞ depends on the potential of the presynaptic cell, as shown in Eq. (2).

In the model, all synaptic currents that arrive at a neuron are summed. The parameter γs is chosen to be
large. Thus, the CPG becomes a relaxation oscillator with the inhibitory synaptic connections modeled as
”fast threshold modulation” (FTM) (Somers and Kopell, 1993, 1995). More specifically, it is an escape-type
half-center oscillator. Nullclines and limit cycle of the CPG are shown in Fig. 2 (b). When one cell is active
(depolarized, e.g. C1) the other cell is deactivated (hyperpolarized, e.g. C2). The V-nullclines of the cells
which depend on the presynaptic potentials conveyed by the synaptic currents (Eq. (2)) are different (solid
and dashed red lines). When the deactivated cell C2 approaches its left knee (solid red line) it becomes
depolarized (activated). Thus it inhibits the cell C1, which becomes hyperpolarized (deactivated).

The parameters gNaP and gL are constant, whereas gsyn, gapp1, and gapp2 can vary (see Appendix A).
The conductances of the central drive, gapp1, and gapp2, define the period and duty factor of the CPG. The
duty factor has originally been defined for a stepping leg as the ratio of the stance phase of the step to the
whole stepping period:

r0 =
Tstance

Tstance + Tswing

=
Tstance
T

. (5)

However, we shall also use this definition to characterize the periodic activity of the CPG neurons. Thus,
stance phase in this context will mean the period when the CPG neuron associated with the retractor muscle,
in short the ’retractor CPG neuron’, is active (depolarized). The swing phase will analogously be defined
for the ’protractor CPG neuron’.

Experimental observations show that for a certain coordination pattern of stepping there is a preferable
ratio of the stance to the swing phase, i.e. a preferable duty factor. For example, the preferable ratio for
tetrapod is about 3:1 and r0 ≈ 3/4, whereas for tripod it is about 2:1 and r0 ≈ 2/3, but always r0 > 0.5
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(Graham, 1985; Grabowska et al., 2012; Mendes et al., 2013). In Fig. 2 (c) and (d), two examples of the CPG
activity with different conductance values of gapp1, and gapp2 are shown (gapp1 = 0.2350nS, gapp2 = 0.1900nS
for tripod, and gapp1 = 0.2500nS, gapp2 = 0.1855nS for tetrapod). They were chosen such that the CPG
produces a stable oscillation with the preferable duty factors, just mentioned. We linearly changed gapp1 and
gapp2 within these limits as shown in Fig. 3. If we decrease gapp1 and simultaneously increase gapp2 along
the straight line as it is shown in Fig. 3 (a) with the gray arrow, then the period of the CPG oscillation
decreases (Fig. 3 (b)) together with the duration of the stance phase (Fig. 3 (d)), whereas the duration of
the swing phase remains almost constant. Thus the duty factor r0 defined as the ratio of the stance phase
to the period also decreases (Fig. 3 (c)).

2.3 Coupling of the segmental CPGs

The system of equations for a single CPG with external inter-segmental synaptic inputs to the retractor
neuron is given in Eq. (1), where the index j runs through all inter-segmental synaptic inputs. The whole
network has three segments, and every segment is described by a system of equations of the form of Eq. (1).

In the inter-segmental network model (Fig. 1) every CPG is connected to another CPG by two synaptic
pathways, one excitatory and one inhibitory, that pass through sensory interneurons (denoted as SINFL,
SINML, and SINHL) modulated by sensory signals (denoted as yFL(t), yML(t), and yHL(t)). Moreover, the
inhibitory pathway is modulated by a peripheral sensory signal originating from the same segment, whereas
the excitatory pathway is modulated by a peripheral sensory signal coming from the (cyclically) preceding
segment. Note, that these pathways connect the retractor CPG neurons C1, C3, and C5, only (see Fig. 1).
A model for sensory interneurons is not specified, but the assumption that the transmission of the inter-
segmental signal could only take place if it arrived at the same time as the corresponding sensory signal is
made.

As mentioned above, the sensory signals encode peripheral sensory information. The sensory signal is
non zero, if the leg has ground contact (is loaded), and zero, if the leg has no ground contact (is unloaded)
(see Fig. 4). Thus in the inter-segmental network model, the sensory signals were modeled as rectangular
functions of time with the duty factor ry = 0.6 (see Eq.(9) in Daun-Gruhn and Tóth (2011)):

y(t) =
a

2

(

1 + sgn(sin(2π(t/T − φ) + α)− sin(α))
)

, (6)

where α = π(1/2 − ry), sgn is the sign function, and a is the amplitude of the sensory signal, which can
differ from segment to segment and from synapse to synapse. The active phase and the duty factor ry of the
sensory signals were defined from the comparison of phase relations of the muscle activities at the different
joints of a single leg (see Fig. 4 in Daun-Gruhn (2011), and Fig. 7 in Daun-Gruhn and Tóth (2011)). The
period of the sensory signals T is adjusted to the period of the CPG. Finally, the phase difference between
the modulatory (sensory) signal and the activity of the segmental CPG at the modulatory synapses (enclosed
in SINFL, SINML, and SINHL) are introduced as the phase shift φ (Eq. (6)). This phase shift also takes
into account the phase relation between the levator-depressor activity and the protractor-retractor activity
(Daun-Gruhn, 2011; Büschges, 2005), and the inter-segmental conduction delay. Moreover, Daun-Gruhn and
Tóth (2011) hypothesized that the change of these phase shifts are the core of the mechanism of switching
between coordination patterns. The animal initiates this switch via a phase-dependent control mechanism.

If CPG k receives input from CPG l (k, l = 1, 2, 3; k 6= l stand for the thoracic segments where the CPGs
reside) via the sensory interneurons, then the input currents are defined as

Ie
k = gesyn,ks∞

(

Vret,l
)

aeky
e
l (t)

(

Vk − Ee
)

,

Ii
k = gisyn,ks∞

(

Vret,l
)

aiky
i
k(t)

(

Vk − Ei
)

.
(7)

Here we have introduced new notations, substituting 1 for FL, 2 for ML, and 3 for HL. The upper indexes
i and e denote inhibitory and excitatory synaptic connections, respectively. For example, yek(t) denotes the
sensory signal modulating the excitatory pathway with amplitude 1 and originating from segment k where
k = 1, 2, or 3 (see Fig. 1). The reversal potentials Ee = 0.0mV and Ei = −80.0mV are the same for
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Figure 2: An isolated CPG. (a) Scheme of a CPG that consists of two non-spiking Hodgkin-Huxley-type neurons (C1
and C2) connected by mutually inhibitory synapses. gapp1 and gapp2 are conductances of the central drive. Period
and duty factor of the CPG activity can be adjusted by changing the values of these parameters. (b) Nullclines and
the limit cycle of a CPG in the symmetric case (gapp1 = gapp2). The solid blue line is the h-nullcline. The solid and
dashed red lines are the V-nullclines of the cells with and without inhibition, respectively. The solid black line is the
limit cycle. Vertical dotted line is the threshold value Vhs = −43.0mV. C1 and C2 indicate the state of the cells just
before switching between active and deactivated state. In the panels (c) and (d), examples of the time courses of the
membrane potential of the retractor CPG neuron C1 (red) and the protractor CPG neuron C2 (blue) are shown for
different parameter values: (c) gapp1 = 0.2350 nS, gapp2 = 0.1900 nS, the duty factor of the oscillation is r0 ≈ 2/3; (d)
gapp1 = 0.2500 nS, gapp2 = 0.1855 nS, the duty factor is r0 ≈ 3/4. The vertical dotted lines denote the boundaries
between the stance phase and the swing phase.

all excitatory and inhibitory synapses. Finally, gisyn,k and gesyn,k are the synaptic conductances in segment

k, and aik and aek are the amplitudes of the sensory signals. The complete list of parameter values for all
synapses is given in Table 6 of Appendix B. Note, that Vret,k is the membrane potential of the retractor
CPG neuron of the segment k.
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Figure 3: Effects of changing the values of the parameters gapp1 and gapp2 of the central drive to the CPG on its
oscillatory properties. (a): linear change of gapp1 and gapp2 within the limits gapp1 = 0.2350 nS, gapp2 = 0.1900 nS
and gapp1 = 0.2500 nS, gapp2 = 0.1855 nS; (b): oscillatory period T ; (c): duty factor r0; (d): length of the stance (red
curve) and swing (blue line) phase. The oscillation frequency of the CPG increases in the direction shown by gray
arrows.

Figure 4: (a) Phase relation between the oscillatory activity of the retractor CPG neuron and the sensory signal at
the same segment yFL (adapted from Fig. 4 in Daun-Gruhn and Tóth (2011)). (b) The rectangular signal y and
its phase relation to the oscillatory activity of the protractor-retractor CPG of the same segment. The duty factor
of the signal is ry = 0.6. T is the period of the CPG’s oscillatory activity. The stance phase starts at t = 0. The
rectangular signal has unit amplitude and a phase shift of 1/8.

3 Phase reduction

3.1 Phase reduction of a single CPG

In this section, we perform phase reduction on the model of a single CPG following Proctor et al. (2010),
Proctor and Holmes (2010), and Guckenheimer and Holmes (1983).

Let’s consider an oscillator with an external input and a period T . The general equation reads

ẋ = f(x) + ǫg(x, t), x ∈ R
n+1, 0 < ǫ≪ 1, (8)

where g is some external input. The parameter ǫ is introduced to indicate that the external input is weak.
The phase reduction of Eq. (8) is

ϕ̇ = ω0 + ǫ
∑

j

∂ϕ

∂xj

(

x0(ϕ)
)

gj
(

x0(ϕ), t
)

∣

∣

∣

x0∈Γ0

,
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where ϕ is the phase of the oscillator in a small neighborhood of Γ0, an attracting hyperbolic limit cycle of
Eq. (8); ω0 is the oscillation frequency, and ∂ϕ

∂xj
is the infinitesimal phase response curve (iPRC) (Proctor

et al., 2010; Proctor and Holmes, 2010).
For the sake of simplicity, we defined the oscillation frequency as ω0 = 1/T and normalized the phase to

take its values in the interval [0, 1].
We reduced every segmental CPG (i.e. each pair of mutually coupled neurons) to one phase oscillator.

As discussed in the preceding section, the external input to the CPG in the inter-segmental network model
was applied only in the first equation (for the membrane potential of the retractor CPG neuron) (Eq. (1)).
Thus in Eq. (8), the state of the CPG was defined by the vector x = [V1, h1, V2, h2]

⊤. The function f(x) is
the right hand side of Eq. (1) without external input. The latter is

ǫg(x, t) = −
1

Cm

[

∑

i

Ii, 0, 0, 0

]⊤

.

Then, the phase-reduced equation for a single CPG can be written as

ϕ̇ = ω0 + ǫZ1(ϕ)g1
(

x(ϕ), t
)

+O(ǫ2)

≈ ω0 −
1

Cm

Z1(ϕ)
∑

i

Ii
(

x(ϕ), t
)

, (9)

where Z1(ϕ) =
∂ϕ
∂V1

is the first component of the iPRC (cf. Eq. (1) without external input), corresponding

to the membrane potential of the retractor CPG neuron. (In Eq. (9), O(ǫ2) means higher order terms in ǫ,
which are small and can be neglected.) It should be noticed that in our case, the external input (synaptic
coupling) is not small. Applicability of the phase reduction theory to this type of relaxation oscillators
with fast-slow dynamics were discussed by Somers and Kopell (1993, 1995); Izhikevich (2000, 2007). They
showed that if the oscillator with fast transition modulation dynamics fulfills the ”compression condition”
(the derivative of the slow variable is less before the jump than after it, which is the case for the CPG we
consider) then the phase reduction can be applied even for strong coupling. Moreover, it was demonstrated by
Somers and Kopell (1993, 1995) that the relaxation oscillators synchronize much more quickly than smooth
(non-relaxation) oscillators.

As it was mentioned in the previous section, the CPG in the original model (Eq. (1)) is an escape type
half-center oscillator. The iPRC of a CPG of this type has been analyzed in Wang and Rinzel (1992); Clewley
(2011) and Zhang and Lewis (2013). An example of the iPRC produced by a single CPG is shown in Fig. 5.
The details of its calculation are provided in Appendix C.

As one can see in Fig. 5, the iPRC is almost zero during the active state of the retractor CPG neuron.
This corresponds to the stance phase of the step. The iPRC is non-zero only during the swing phase of the
step. Thus, the phase of the CPG can not be changed by an external input during the stance (retraction)
phase, and the influence of such an input is strongest close to the end of the swing (protraction) phase. The
positive peak is narrow due to steepness of the synaptic activation function s∞ (the parameter γs is large).
These properties of iPRC for escape type half-center oscillators are explained in Zhang and Lewis (2013).
In our case, the CPG is asymmetric, gapp1 6= gapp2. Thus the iPRC for retractor and protractor neurons
differ (Z1(ϕ) 6= Z2(ϕ+ 0.5)). Moreover, the switching occurs at r0, and not at 0.5 as in the symmetric case
considered by Zhang and Lewis (2013).

The large amplitude of the iPRC towards the end of the protraction phase implies that the CPG neuron
at the end of the hyperpolarized state (the state of C2 neuron in Fig. 2 (b)) escapes earlier from the left
knee into the active state. Due to the ”compression condition” the phase reduction is still applicable in this
case.

In the rest of this paper, we only consider the first component of the iPRC and the first equation of the
system Eq. (1) and drop the subscripts from the notations, i.e. henceforth Z(ϕ) ≡ Z1(ϕ) and V ≡ V1.
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Figure 5: The infinitesimal phase response curve (iPRC) produced by a single CPG. The upper panel shows the
membrane potential of the retractor neuron (red line). The bottom panel displays the corresponding component of
the iPRC (blue line). The vertical dashed line indicates the instant of time at which the retraction phase switches to
the protraction one.

3.2 Application of the phase reduction method to a segmental sub-network of

the inter-segmental model

Following Eq. (9) and Eq. (7), the phase-reduced equation for a CPG of segment k that receives input from
the segment l (k, l = 1, 2, 3; k 6= l) can be written as follows

ϕ̇k = ω0 −
1

Cm

Z(ϕk)
[

Ii
k

(

Vk(ϕk), Vl(ϕl), t
)

+ Ie
k

(

Vk(ϕk), Vl(ϕl), t
)

]

. (10)

The time dependence of the input currents in Eq. (10) arises from the definition of the sensory signals in
Daun-Gruhn and Tóth (2011). In the original model, the period of the sensory signals was adjusted during
the simulation so that the phase of these sensory signals was shifted relative to the phase of the corresponding
CPG. Therefore, in the phase oscillator model, we can replace the time variable in the functions yel (t) and
yik(t) in Eq. (10) and Eq. (7) by the phase variable ϕl and ϕk of the corresponding CPG. This is equivalent
to the assumption that the kinematics of the legs are, in essence, determined by the CPGs and thus the
sensory signals arising from a given segment have the same period as the CPGs of this segment and are phase
locked to them. This assumption restricts our analysis only to stable oscillations. However, it simplifies the
analysis of the system having a reduced number of parameters.

Then, we can describe the sensory signals as

yik(ϕk) = y(ϕk +∆i
k), y

e
l (ϕl) = y(ϕl +∆e

l ),

where ∆i
. and ∆e

. are phase shifts of the sensory signals; y(·) is a piecewise constant (rectangular) periodic
function with duty factor ry = 0.6 as depicted in Fig. 4. Since the phase shifts can differ for different
segments and different synaptic connections, we have six different ∆’s in total. Note, that the phase shift φ
in Eq. (6) defined in Daun-Gruhn and Tóth (2011), is equivalent to 1−∆; an increase in φ is the same as a
decrease in ∆ and vise versa.
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Finally, we obtain the phase equation for the CPG in segment k, connected to that in segment l from
Eq. (10) as

ϕ̇k = ω0 + hik(ϕk, ϕl,∆
i
k) + hek(ϕk, ϕl,∆

e
l ). (11)

where the coupling functions are

hik(ϕk, ϕl,∆
i
k) =− gikZ(ϕk)s(ϕl)y(ϕk +∆i

k)
(

V (ϕk)− Ei
)

,

hek(ϕk, ϕl,∆
e
l ) =− gel Z(ϕk)s(ϕl)y(ϕl +∆e

l )
(

V (ϕk)− Ee
)

. (12)

Here, gik = gisyn,ka
i
k/Cm, gel = gesyn,ka

e
l /Cm, and s(ϕl) = s∞

(

Vl(ϕl)
)

.

3.3 Averaged phase equations

Following Hoppensteadt and Izhikevich (1997), Proctor et al. (2010), and Proctor and Holmes (2010), we
derive the averaged phase equations for two coupled CPGs. Let’s introduce the phase deviation ψ = ϕ−ω0t
and average the phase equation (11) over the period T :

ψ̇k =−
1

T

∫ T

0

Z(ψk + ω0t)s(ψl + ω0t)

×
[

giky(ψk +∆i
k + ω0t)

(

Vk(ψk + ω0t)− Ei) + gel y(ψl +∆e
l + ω0t)

(

Vk(ψk + ω0t)− Ee
)

]

dt.

Defining a new time variable τ = ψk + ω0t, and hence ψl + ω0t = ψl − ψk + τ , we have

ψ̇k = Hi
k(ψl − ψk,∆

i
k) +He

k(ψl − ψk,∆
e
l ), (13)

where the averaged coupling functions are

Hi
k(ψl − ψk,∆

i
k) = −gik

∫ 1

0

Z(τ)s(ψl − ψk + τ)y(τ +∆i
k)
(

Vk(τ) − Ei
)

dτ, (14)

and

He
k(ψl − ψk,∆

e
l ) = −gel

∫ 1

0

Z(τ)s(ψl − ψk + τ)y(ψl − ψk + τ +∆e
l )
(

Vk(τ) − Ee
)

dτ. (15)

In Fig. 6, an example of the averaged coupling functions for the excitatory (dotted red line) and inhibitory
(dotted blue line) inputs, and their sum (solid black line) are shown. The figure illustrates that the excitatory
input dominates, whereas the inhibitory input adds a negative shift to the total coupling function when
0 < ∆ψ . r0. However, this shift is important and ensures the stability of the zero point of the total
coupling function labeled in Fig. 6 with an arrow. The inhibitory input weakly depends on the value of ∆i.
Thus, in the subsequent analysis, we can keep ∆i constant and vary ∆e, only.

3.4 The complete phase oscillator model

The complete phase oscillator model resulting from the reduction of the inter-segmental network model is
shown in Fig. 7.

We derive the complete phase-reduced model for fixed values of the parameters gapp1 and gapp2. Since
these parameters define the period and duty factor of the CPG we set their oscillatory frequencies to be
equal. Then, the equations of the complete reduced model read







ϕ̇1 = ω + hi1(ϕ1, ϕ3,∆
i
1) + he1(ϕ1, ϕ3,∆

e
3),

ϕ̇2 = ω + hi2(ϕ2, ϕ1,∆
i
2) + he2(ϕ2, ϕ1,∆

e
1),

ϕ̇3 = ω + hi3(ϕ3, ϕ2,∆
i
3) + he3(ϕ3, ϕ2,∆

e
2),

(16)

where the coupling functions are defined in Eq. (12).
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Figure 6: Examples of averaged coupling functions Hi(ψ,∆i) (dotted blue), He(ψ,∆e) (dotted red) and their sum
(solid black). Parameters of the coupling: ∆i = 1/8, ∆e = 0.3, gi = 0.327 s−1, ge = 1.3109 s−1. Parameters of the
system: gapp1 = 0.250 nS, gapp2 = 0.1855 nS. The vertical dashed line denotes ψ = r0, where r0 = 0.7527 is the duty
factor of the CPG.

Figure 7: Phase oscillator model of the inter-segmental network model. Large black empty circles represent the
protractor-retractor CPG oscillators, which are connected cyclically via sensory interneurons. The latter are depicted
as small circles (cf. Fig. 1). Red lines and triangles depict excitatory connections, whereas blue lines and circles
represent inhibitory connections. y1, y2, and y3 denote sensory signals arising from the sense organs of the front,
middle and the hind legs, respectively. ∆i

j and ∆e
j are the phase shifts between the periodic sensory signals and the

oscillatory activity of the CPG of the corresponding segment j in the inhibitory and excitatory synaptic connections,
respectively. θ1 and θ2 are the phase differences between the first segment and the second segment and, the third
segment and the second segment. For further explanations, see text.

Applying the averaging theory for phase oscillators to Eq. (16), we obtain an expression similar to Eq. (13)
for all segments:







ψ̇1 = Hi
1(ψ3 − ψ1,∆

i
1) +He

1(ψ3 − ψ1,∆
e
3),

ψ̇2 = Hi
2(ψ1 − ψ2,∆

i
2) +He

2(ψ1 − ψ2,∆
e
1),

ψ̇3 = Hi
3(ψ2 − ψ3,∆

i
3) +He

3(ψ2 − ψ3,∆
e
2).

(17)
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where the averaged coupling functions Hi
k(ψl − ψk,∆

i
k) and He

k(ψl − ψk,∆
e
l ) are defined in Eqs. (14) and

(15).
Subtracting the 2nd equation from the 1st and the 3rd one, we reduce the system to a two dimensional

one














θ̇1 = Hi
1(θ2 − θ1,∆

i
1) +He

1(θ2 − θ1,∆
e
3)

−Hi
2(θ1,∆

i
2)−He

2 (θ1,∆
e
1),

θ̇2 = Hi
3(−θ2,∆

i
3) +He

3 (−θ2,∆
e
2)

−Hi
2(θ1,∆

i
2)−He

2 (θ1,∆
e
1),

(18)

where θ1 = ψ1 − ψ2, and θ2 = ψ3 − ψ2, and thus ψ3 − ψ1 = θ2 − θ1.

3.5 Further assumptions and considerations needed for the analysis of the phase

oscillator model

The usual approach for analysis of the reduced phase oscillator model of a locomotor system (e.g. Proctor
and Holmes (2010); Massarelli et al. (2016); Zhang and Lewis (2013)) is to search for phase differences that
are solutions of the averaged system that represents a specific walking or swimming coordination pattern.
For example, analysis of the solution of the Eq. (18) at (θ1, θ2) = (2/3, 1/3). In this study we aimed at
understanding the mechanisms that underlie the generation of different coordination patterns in the original
model. Therefore, the methods of analysis we used should provide a direct comparison of the results of the
original and the reduced models.

In the previous section, we carried out phase reduction of the inter-segmental network model: every
segmental CPG was reduced to a phase oscillator (Fig. 8 (a) and (c)). In the original model of Daun-Gruhn
and Tóth (2011), the stance and the swing phases resulted from the active phases of the retractor and
the protractor CPG neurons, respectively (see Fig. 2 and Fig. 8 (b)). Moreover, the coordination patterns
produced in the simulations were determined by means of the time relation of the swing phases of different
legs. However, in the phase oscillator model, the state of the CPG is defined by a single variable – the phase
ϕ. Therefore, to compare the simulation results of the original and reduced models the stance and the swing
phases in the phase oscillator model had to be defined explicitly. The stance phase was thus defined to be
the interval 0 ≤ ϕ < r0, and the swing phase as the interval r0 ≤ ϕ < 1. Here, r0 is the duty factor of
the periodic activity of a CPG with central input, only (Fig. 8 (c) and (d)). The value of r0 is constant for
fixed values of the parameters gapp1 and gapp2, i.e. for constant central drive. If the CPG receives additional
input, the time course of the phase ϕ will become nonlinear (dashed curve in Fig. 8 (d)). Nevertheless,
the stance phase and the swing phase are still defined the same way as before, i.e. the end of the stance
phase is where the curve hits the level ϕ = r0. Note that this definition of the stance and swing phase is in
accordance with that using the oscillatory activity of the CPG neurons in the network model, and, in turn,
with the original definition given to characterize the phases of stepping in animals. In the next section, we
shall further justify this definition.

Further, we performed the analysis of the reduced model in two ways. First, we consider the solution
of the non-averaged system Eq. ((16)), which shows how the phases of the individual CPGs evolve for a
certain set of parameter values and initial conditions. Using the definition of the stance and swing phases
stated above we could replicate the walking patterns. Here, we expected that the simulation results of the
non-averaged system Eq. (16) coincide with the results of the original model not only qualitatively but also
quantitatively. In particular, the timing of the switching between stance and swing phases in the original
and the reduced models should coincide.

To solve the non-averaged phase equation system Eq. (16) numerically, the membrane potential of the
retractor neuron of the CPG V (ϕ) and the iPRC Z(ϕ) in Eq. (12) were numerically approximated for different
values of the parameters gapp1 and gapp2. The details of the calculation can be found in Appendix C.

Next, we investigated the averaged system Eq. (18), searching for stable solutions, i.e. coordination
patterns, that are characterized by constant phase differences between the activities of the segmental CPGs.
Accordingly, θ1 and θ2 should be constant in the solutions, hence the left hand side of Eq. (18) should be equal
to zero. We plotted the nullclines of Eq. (18) on the (θ1, θ2) surface (torus) and found their intersections,
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which are the fixed points of these equations. Note that in our case, the nullclines are closed lines due to
periodicity of the variables θ1 and θ2. The eigenvalues of the Jacobian matrix of Eq. (18) evaluated at the
fixed points determine the stability of the solutions at these fixed points.

Figure 8: Scheme of phase reduction of the CPG model. (a) CPG with central input, only. (b) Membrane potential
of the protractor (blue) and retractor (red) CPG neurons over one oscillatory period. An illustrative example of the
time evolution of the membrane potentials in the presence of an additional input is shown with red and blue dashed
lines. (c) The phase oscillator model of the CPG. (d) Stance and swing phase of the oscillation. The end of the
stance phase (red) is at the point where the increasing straight line crosses the horizontal line ϕ = r0. The rest of
the period is then the swing phase. For better visibility the increasing straight line was drawn in red in the stance
phase and blue in the swing phase. The dashed red-blue curve shows an illustrative example of the nonlinear time
evolution of the phase ϕ during an oscillatory period, if the CPG receives additional input. The end of the stance
phase (the dash-dotted vertical line) is here, too, at the point where the curve intersects the horizontal line ϕ = r0.
The curve is colored the same way as the straight line.

Analysis of the fixed points of the averaged system Eq. (18) allows us to investigate the system on the
reduced variables and parameters space. However, by averaging, we loose the information about the state
of the individual legs, thereby the coordination pattern produced by the system. To solve this problem, we
derived the regions of tripod and tetrapod coordination patterns on the (θ1, θ2) plane using the definition
of the stance and the swing phases (see Fig. 8). In Appendix D, we describe the details of the analysis of
phase relations between θ1 = ϕ1 − ϕ2 and θ2 = ϕ3 − ϕ2, which depend on the coordination patterns.

4 Analysis and simulations

4.1 Entrainment problem for two CPG oscillators

4.1.1 The model

To understand the dynamics of the whole system, we started with the analysis of a model of two uni-
directionally coupled segmental CPGs where one (driving) CPG oscillates with a constant frequency and
entrains the second (driven) CPG. The synaptic connections between the two segments are the same as in
the inter-segmental network model (see Fig. 9). According to Eq. (11) and (16) the phase equations for this
model are

{

ϕ̇1 = ω1,
ϕ̇2 = ω2 +

[

hi2(ϕ2, ϕ1,∆
i) + he2(ϕ2, ϕ1,∆

e)
]

,
(19)

where the coupling functions are defined in Eq. (12).
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Figure 9: A model of two uni-directionally coupled segmental CPGs (a) and the corresponding phase oscillator model
(b). The notations are the same as in Figs. 1 and 7.

Again, we assume that ω1 = ω2, subtract the second equation from the first one and perform the averaging
procedure. We then have

ψ̇1 − ψ̇2 = −Hi
2(ψ1 − ψ2,∆

i)−He
2 (ψ1 − ψ2,∆

e),

where the functions Hi
2 and He

2 on the right hand side are defined in Eq. (14) and (15). As before, we
introduce a new variable θ = ψ1 − ψ2 (the phase of the driving oscillator minus the phase of the driven
oscillator) and obtain the equation for the phase difference

θ̇ = −Hi
2(θ,∆

i)−He
2 (θ,∆

e) = F (θ,∆i,∆e). (20)

4.1.2 Validity of assumption

To establish whether the assumption made in section 3.5 (see Fig. 8) on the definition of the swing and
stance phases of the leg is correct, we first compared a model of two uni-directionally coupled CPGs to its
reduced phase oscillator model (Eq. (19)). For this purpose, we numerically integrated the model equations
of two uni-directionally coupled CPGs, and also, separately, those of the phase oscillator model (Eq. (19)).
To mimic the case shown in Fig. 8 (b) and (d) we integrated both systems with similar initial conditions
first without coupling, and then activated the coupling at t = 1000ms. Note, that the initial phases of the
isolated CPGs can be uniquely defined. The parameter values in the coupling functions were the same as in
the inter-segmental network model (see Appendix A and B). The phase shifts were ∆i = 1/8 and ∆e = 0.3.
In the system of coupled CPGs, the parameter values of the phase shifts were chosen as φi,e = 1 − ∆i,e.
The results are shown in Fig. 10. In the two upper panels, the oscillatory activities of the two CPGs are
displayed. In the bottom panel, the solution to the phase oscillator model, Eq. (19) is shown: ϕ1 red, ϕ2

blue oblique straight lines. Their apparent discontinuity is due to their periodicity. Using our definition
of the stance and the swing phase for the oscillatory activity of the CPG neurons, we could construct a
sequence of swing phases of what could be regarded as swing phases of the corresponding legs from those
of the CPG oscillations. These are displayed in the middle panel of Fig. 10. One can easily see that during
swing phase, the phase ϕ of the corresponding phase oscillator lies between r0 and 1 in the reduced model
with activated coupling, as well as with non-activated coupling. We performed the simulation with different
initial conditions and with different time points for the coupling activation and in all cases observed the
same quantitative agreement between the original and reduced models. This demonstrates that the reduced
model replicates the oscillatory properties of the original model and justifies the way the swing phase of a
phase oscillator was defined, namely as the interval r0 ≤ ϕ ≤ 1.
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Figure 10: Comparison of a model of two uni-directionally coupled CPGs to the corresponding phase oscillator model.
The coupling is activated at t = 1000ms (vertical dashed line). The two upper panels show the time courses of the
membrane potentials of retraction (solid) and protraction (dashed) neurons of CPG1 (red) and CPG2 (blue). In the
panel below them, the red and blue bars represent the swing phases (protractions) of the corresponding legs. They
were constructed from the oscillatory activity of the CPGs. In the bottom panel, the time courses of ϕ1 and ϕ2 in
the reduced model Eq. (19) are displayed. The swing phases of the reduced model (r0 ≤ ϕi ≤ 1, i = 1, 2) coincide
with those of the original model. The discontinuity of ϕi arises because of their periodicity. The boundaries of the
swing phases of the CPGs are labeled by vertical dotted lines throughout all panels. The parameter values in the
two uni-directionally coupled phase oscillators system Eq. (19) were ∆i = 1/8 and ∆e = 0.3; in the system of two
uni-directionally coupled CPGs the phase shifts were defined as φi,e = 1−∆i,e.

4.1.3 Stability analysis

We also performed stability analysis of the solutions to Eq. (20). In the inter-segmental network model, the
phase delay in the inhibitory sensory signal ∆i is constant and equal to 1/8, whereas the phase shift in the
excitatory sensory signal ∆e is variable, and defines the coordination patterns (Daun-Gruhn and Tóth, 2011).
Thus, we examined the fixed points θ∗ of Eq. (20) using ∆e as bifurcation parameter and kept ∆i = 1/8
constant.

We found the fixed points θ∗ of Eq. (20) with gapp1 = 0.2500nS, gapp2 = 0.1855nS. The bifurcation
diagram is shown in Fig. 11 (a), where the stable branches are marked with black filled lines, and the
unstable branches with unfilled lines. The system has four different types of stable solutions. The first type,
labeled with 1, is θ∗ = 0. This solution occurs when the swing phases of both oscillators completely overlap
(Fig. 11 (b)). Two other types of solutions, labeled with 2 and 3, respectively, lie on the central stable
branch and can be approximated as θ∗(∆e) ≈ 1−∆e, if ∆e ∈ [1− r0, 1]. In the interval ∆e ∈ [1− r0, r0], the
swing phase of the second (driven) oscillator lies between the swing phases of the first (driving) oscillator.
Thus, the swing phases do not overlap (Fig. 11 (b)). This is solution type 2. If the swing phases of the
oscillators partially overlap, this happens when ∆e ∈ [r0, 1], we have solution type 3. This division of the
central stable branch is formal. The last type of solutions, labeled with 4, can be approximated as θ∗ ≈ r0
and is a solution with small negative latency between the swing phases of the oscillators: the swing phase
of the second oscillator ends just after the swing phase of the first oscillator starts. The solutions types are
summarized in Table 1.

The structure of the bifurcation diagram (Fig. 11 (a)) can be explained by means of the properties of
the functions s(ϕ), y(ϕ), and the iPRC Z(ϕ). The details of derivation of approximate expressions for the
stable and unstable branches are described in Appendix E. The approximate expressions imply that the
stable solution θ∗, hence, the phase difference between segments is defined primarily by the phase shift in
the excitatory synaptic pathway ∆e and the duty factor r0. When r0 decreases, the interval representing the
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Figure 11: (a) Bifurcation diagram obtained from the averaged phase difference equation for the uni-directional
coupled model (Eq. (20)): the fixed points θ∗ of Eq. (20) versus ∆e (∆i = 1/8). The black filled lines are the stable
and the unfilled lines the unstable branches. The vertical dash-dotted lines denote ∆e = 1− 2r0 + ry, ∆

e = 1− r0,
∆e = ry, and ∆e = r0, where r0 and ry are the duty factors of the CPG and the sensory signal y, respectively. The
horizontal lines are defined as θ = 1− r0, θ = r0, and θ = r0 +∆i; the dotted oblique line as θ = 1 − r0 + ry −∆e.
The numbers in both panels denote the solution types. (b) Dependence of the overlap of the swing phases on the
solution types. Gray and black bars symbolize the swing phases of the first and the second oscillators, respectively.
Vertical dashed lines mark the start (ϕ1 = r0) and the end (ϕ1 = 0) of the swing phases of the first oscillator.

Table 1: Summary of the solution types showing the corresponding intervals of ∆e and θ.

∆e θ θ(∆e)

1 [0, ry] 0 0
2 (1− r0, r0] [1− r0, r0) 1−∆e

3 (r0, 1] [0, 1− r0) 1−∆e

4 (1− 2r0 + ry, 1− r0) ≈ r0 ≈ r0
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solution type 4 moves down such that it remains parallel to the ∆e-axis, and its end points stay on the line
θ = 1− r0 + ry −∆e and θ = 1−∆e (solution line 2), respectively. However, the former line itself is shifted
upwards parallel, hence the solution type 4 disappears when r0 = ry. The stable branches of the solution
types 1,2, and 3 do not change with respect to r0. Besides, the formal border between the solution types 2
and 3, which divides the non-overlapping solution from the overlapping one, depends on r0. Recall that the
duty factor r0 is determined by gapp1 and gapp2.

4.2 The role of the phase shifts in producing stable coordination patterns in

the complete system

We have just shown that the value of ∆e of the preceding segment determines the phase shift between the
oscillatory activities of two segmental CPGs. The complete system (Fig. 7) consists of three inter-segmental
couplings of the same kind as in the model of two uni-directionally coupled oscillators. Thus, the zeros of
the H functions of the system Eq. (20) correspond to constant phase differences between segments of the
complete system. Using the results of the previous section, we analyzed the complete system to find different
coordination patterns. First we determined the phase relations between legs in different coordination patterns
using pairwise phase relation between legs to establish the values of the phase shifts ∆e.

Experimentally, coordination patterns can be defined and recognized by the phase shifts between the
periodic movement of the legs. In the simulations, we followed this way but we used phase shifts between the
oscillatory activities of the segmental CPGs instead. However, as we explained earlier in this paper, these
phase shifts could directly be interpreted as ones between the movements of the different legs. We shall thus
sometimes speak directly of legs and leg movements instead of (electrical) oscillatory activities of CPGs.

Let’s consider examples of tetrapod and tripod coordination patterns (Fig. 12). In Fig. 12, the swing
phases of FL, ML and HL are shown as black boxes. The start and end of the swing phases are drawn as
dotted and dashed vertical lines, respectively. These lines are plotted relative to the swing phases of the
cyclically preceding leg (e.g. FL precedes ML, and HL cyclically precedes FL). Let us consider a leg j and
the phase of its movement ϕj . Then let ϕi denote the phase of the movement of the preceding leg i. We
define the time dependent, instantaneous phase difference ϑij as ϑij = ϕi − ϕj . This definition is analogous
to that of θk and θ in the previous section. This new variable differs from θk in Eq. (18) and θ in Eq. (20),
since those are time averages over one period, whereas ϑij is instantaneous. However, the time average of
ϑij over a period of a stable coordination pattern should be equal to θ.

Figure 12: Examples of tetrapod (left) and tripod (right) coordination patterns and phase relations between leg
movements. Black boxes represent the swing phases of the movements of FL, ML, and HL. Vertical dotted lines
denote the start (ϕi = r0), dashed ones the end (ϕi = 0) of the swing phases of the leg movements. θ1 and θ2 are
the phase differences defined in Eq. (20).

In order to obtain a tetrapod coordination pattern (left panel in Fig. 12), swing phases of the periodic
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movement of any leg should lie between the swing phases of the movement of the preceding leg. All phase
differences should therefore obey the condition: 1 − r0 < ϑij < r0. On the other hand, the value of ϑij is
determined by ∆e

i , and the solution satisfying the condition 1 − r0 < θi < r0, is of type 2 (see Fig. 11 and
Table 1). Using the approximation for this solution type, we determined the values of the corresponding
∆e’s for which a tetrapod coordination pattern is produced:

r0 > θi = 1−∆e
i , thus ∆

e
i = 1− r0 + β, i = 1, 2, 3, (21)

where β > 0 is some phase shift ensuring that this condition is satisfied. An example of the parameter
values for this case is given in Table 2. It should be noted that a tetrapod coordination pattern can also be
obtained if the latency between the swing phases of the leg movement is almost zero (see solution type 4 in
Fig. 11 (b)). In this case, the values of ∆e

i fall into the interval [1− 2r0 + ry, 1− r0] for any pair of legs (see
Table 1).

Next, we considered a tripod coordination pattern (right panel in Fig. 12). Now, the conditions for the
front-to-middle and the middle-to-hind leg pairs remain the same (1 − r0 < ϑi,i+1 < r0, i = 1, 2), whereas
the swing phases of the front and hind leg movements overlap (ϑ31 > r0 or ϑ31 < 1− r0). Due to periodicity
of the phase, these conditions are equivalent to |ϑ31| < 1− r0. Tripod coordination pattern can therefore be
achieved, if we set the values of ∆e

1 and ∆e
2 as in the case of the tetrapod coordination pattern (Eq. (21)),

and the value of ∆e
3 in the region of solution type 3 (see Fig. 11 and ”tripod” in Table 2).

Table 2: The values of the phase shifts ∆e
j between CPGs and modulatory signals y that correspond to tetrapod (left)

and tripod coordination pattern (right). The duty factor of the CPG for parameters used is r0 = 0.7527, β = 0.03.
The value of ∆i is 1/8 for all segments.

j tetrapod tripod

1 1− r0 + β 1− r0 + β
2 1− r0 + β 1− r0 + β
3 1− r0 + β r0 + β

Here, we defined tripod to be a coordination pattern with overlapping swing phases of the front and hind
legs. In a ”perfect” tripod coordination pattern, the swing phases of the front and hind legs are completely
synchronized, i.e. ϑ31 = 0. It can be achieved by setting ∆e

3 to be in the region where solution type 1
and solution type 2 (or type 4) coexist. The desired phase differences are constrained by an additional
condition for ∆e

1 and ∆e
2. Indeed, from the scheme of the tripod coordination pattern shown in Fig. 12

(right), we see that the front and hind leg movements are synchronous, if θ1 = θ2. On the other hand, from
the approximation of phase difference appearing in solution type 2 and the definition of θ1 and θ2, we can
express them in terms of ∆e

1 and ∆e
2:

θ1 = ϕ1 − ϕ2 = ϑ12 = 1−∆e
1,

θ2 = ϕ3 − ϕ2 = −ϑ23 = ∆e
2 − 1.

Using the periodicity of the phase, the additional condition for ∆e
1 and ∆e

2 to obtain ”perfect” tripod
coordination pattern is

∆e
1 +∆e

2 = 1. (22)

This condition means that the sum of the phase shifts of the sensory signals in the front-middle and the
middle-hind leg pairs add up to one oscillatory period.

In this section, we have determined the parameter values of the model to produce desired coordination
patterns by calculating the phase relations between leg pairs in tetrapod and tripod coordination patterns.
This results help us to understand the role of the parameters ∆e in the original model. A more detailed
analysis of the phase relations between all legs in different coordination patterns, and the representation of
them on a two dimensional plane of phase differences is presented in Appendix D.
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4.3 Simulation of stable stepping

We simulated the full non-averaged system of phase oscillators (Eq. (16)) with different parameters and
initial conditions. The conductances of the central input (which represents descending drive from higher
brain regions) to all CPGs were equal to gapp1 = 0.2500nS, gapp2 = 0.1855nS. This produced stable
oscillations with a duty factor r0 = 0.7530 and period T = 477.37ms. The values of the other model
parameters are given in Appendix A.

In the previous sections, we showed that the phase relations between segments of the model depended
on the values of the phase shifts ∆e

j between the CPG and the sensory signal y. We also found the values of
∆e

j (Table 2) that correspond to different coordination patterns. Indeed, with these parameter values, the
model produced stable tetrapod (Fig. 13 (a)) and tripod (Fig. 13 (b)) coordination patterns. In Fig. 13,
black boxes stand for the swing phases of the legs where ϕk ∈ [r0, 1] (See Sections 3.5 and 4.1).
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Time/Period
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(b)

Figure 13: Tetrapod (a) and tripod (b) coordination patterns simulated by solving Eq. (16). Black bars represent
the swing phases of the front (FL), middle (ML), and hind (HL) legs. The vertical dashed lines mark the start of the
swing phase of the hind leg. The parameters of Eq. (16) and their values are given in Table 2.

Next, we analyzed the averaged system Eq. (18), as described in Section 3.5, with the parameter values
given in Table 2. In Fig. 14, the nullclines and the fixed points of this system in the (θ1, θ2) plane are shown
with the regions of the coordination patterns. These regions are determined in Appendix D. A fixed point
of the averaged system Eq. (18) in the (θ1, θ2) plane represents a given coordination pattern. The arrows
in Fig. 14 point to the stable solutions of the averaged system Eq. (18). They, in turn, correspond to the
solutions of the non-averaged system Eq. (16), which are illustrated in Figs. 13. Thus a solution to the
non-averaged system Eq. (16) can be associated with a fixed point in this plane. Here again, the solutions
belonging to a given coordination pattern, are within the corresponding region (see Appendix D, compare
with Fig. 21).

The stable focus that corresponds to the tetrapod coordination pattern is located at the intersection of
two trivial nullclines of the system Eq. (18) (Fig .14 (a)). Indeed, with the parameter values given in Table 2
(”tetrapod”), the zero solution to the right hand side of the first equation of Eq. (18) is obtained, if θ2 = 2θ1
and to that of the second equation of Eq. (18), if θ2 = −θ1. This solution exhibits the rotational symmetry,
if the phase differences between all pairs of legs are equal. The nullcline θ2 = −θ1 also applies to the case of
the tripod coordination pattern (Fig. 14 (b)).
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Figure 14: Nullclines and fixed points of the system Eq. (18) with the values of ∆e
j and ∆i

j in Table 2. The arrows
point to the solutions of the averaged system Eq. (18) that correspond to the solutions of the non-averaged system
Eq. (16). (a) stable tetrapod coordination pattern, (b) stable tripod coordination pattern. The blue and red areas
are the regions of the tetrapod and tripod coordination patterns, respectively (see Appendix D). Dashed and solid
lines are the nullclines of the first and the second equation, respectively. The different markers denote different types
of fixed points: stable and unstable nodes are filled and empty circles, respectively; filled square is a stable focus;
saddles are crosses.

There are other stable fixed points lying outside the regions of the tetrapod and tripod coordination
patterns, i.e. inside the white area. These fixed points are solutions for which the swing phases of the
neighboring legs overlap. Some of these fixed points are close to instability, like those in the upper right
and the lower left corner in Fig. 14 (a) and (b). We didn’t pay further attention to these solutions in the
present work. However, two solutions that the model predicts need to be discussed. The first one is the
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zero solution (0, 0) in Fig. 14 (a), which means that all three legs are moving synchronized. The second is
the solution in the lower right corner in Fig. 14 (b), which occurs when the middle and the hind legs are
simultaneously in the swing phase. These solutions result in unstable postures and are not observed in the
walking animal. Although the second solution can be observed for a short period of time and requires the
proper coordination of the contralateral legs for stable walking (Grabowska et al., 2012). This is a limitation
of the model containing only the ipsilateral legs.

We also mimicked various tripod coordination patterns using the condition Eq. (22). As expected,
the simulation results revealed that for given initial conditions and for the values of ∆e

1 and ∆e
2 that satisfy

Eq. (22), the swing phases of the front and the hind legs are completely synchronized (not shown). Moreover,
the stable fixed point of Eq. (16) that corresponds to this ”perfect” tripod lies on the central diagonal line
(dashed red line in Fig. 20, Appendix D) within the region of the tripod coordination pattern. When
∆e

1 = ∆e
2 = 0.5, the corresponding stable solution is in the center of the (θ1, θ2) plane, at the point (0.5, 0.5)

(not illustrated either).

4.4 Simulation of transitions between coordination patterns

In Daun-Gruhn and Tóth (2011), transition between coordination patterns was achieved by changing ∆e
3 by a

half period without changing the oscillatory period of the CPGs. A similar transition can be performed with
the reduced phase oscillator model (the non-averaged system Eq. (16)). An example of such switching from
tetrapod to tripod coordination pattern and back is shown in Fig. 15. The mechanism of switching between
coordination patterns can be explained by using the bifurcation diagram in Fig. 11 for the model of two
coupled phase oscillators Eq. (20) (cf. Section 4.1.3). Indeed, the simulation was started with the parameter
values given in Table 3 (”tetrapod”) with which a stable tetrapod coordination pattern was produced. As
we discussed in Sections 4.1 and 4.2, these values of the parameters ∆e

1 and ∆e
2 correspond to solution type

2, and the value of ∆e
3 to solution type 4 (see Fig. 11). At the time point, marked by the left vertical dashed

line in Fig. 15, the value of ∆e
3 was changed by a half period (γ = 0.5), whereas the values of the phase shifts

∆e
1 and ∆e

2 remained the same. The set of parameter values after this change is given in Table 3 (”tripod”).
In this case, the value of ∆e

3 jumped into the interval of solution type 3 (Fig. 11), where the swing phases of
the front and hind legs overlap. Thus, the reduced model switched to the stable tripod coordination pattern.
In the same way, the reduced model switched back to the tetrapod solution. The switch took place at the
time point marked by the right vertical dashed line in Fig. 15.

Time/Period
0 5 10 15 20

HL

ML

FL

4pod 3pod 4pod

Figure 15: Illustration of the transitions from tetrapod to tripod and back by changing the phase shift ∆e
3 between

the hind leg’s CPG and the sensory signal y by a half period (γ = 0.5). Vertical dashed lines show the time instants
of the switchings. Vertical dotted gray lines indicate equidistant time points. The parameters of the non-averaged
system Eq. (16) and their values are given in Table 3
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Table 3: Values of phase shifts between CPGs and modulatory signals y that correspond to tetrapod (left) and tripod
(right) in the simulation of switching between coordination patterns. The duty factor of the CPG for parameters
used is r0 = 0.7527, β = 0.03. The value of ∆i is 1/8 for all segments.

j tetrapod tripod

1 1− r0 + β 1− r0 + β
2 1− r0 + β 1− r0 + β
3 1− r0 − β 1− r0 − β + 0.5

In order to take other inter-segmental interactions in the whole system into account, we analyzed the
nullclines and the fixed points of the averaged system Eq. (18) with the set of parameter values in Table 3.
The resulting nullclines (not shown) were similar to those presented in Fig. 14 for stable tetrapod and tripod
coordination patterns. Changing the value of ∆e

3 altered the stability and the position of the fixed points
of the averaged system Eq. (18). Furthermore, at a transition between coordination patterns, the system
switched from one stable solution (fixed point) in the region of one coordination pattern to a fixed point in
the region of another coordination pattern.

Due to the instantaneous change of the value of ∆e
3, it is difficult to trace the time evolution of the

nullclines and of the fixed points. We therefore considered another type of transition between coordination
patterns in the next section. This type of transition is due to a gradual change of the period of the CPG
oscillators. In this case, we could analyze the position and the stability of fixed points of the averaged system
Eq. (18) in more detail.

4.5 Transition by increasing locomotion speed

In all examples shown in the previous sections, the central descending input to CPGs was kept constant.
The isolated CPG would produce oscillatory activity with constant period and duty factor. It is, however,
known (Graham, 1972; Cruse, 1990; Mendes et al., 2013) that the period and the duty factor differ in tri-
and tetrapod coordination patterns during insect walking. In the latter case, the period and duty factor are
larger than in the former. Thus, as the period of the CPG oscillation decreases, transition from tetrapod
to tripod coordination pattern emerges at some point. In the model of Daun-Gruhn and Tóth (2011), this
type of transition was achieved by an appropriate change of the conductances gapp1 and gapp2 and temporary
blocking of the excitatory synapses, which lead to the phase shift between segments. We analyzed this type
of transition using the reduced phase oscillator model of the inter-segmental network. We inspected the
behavior of the fixed points of the averaged system Eq. (18) as the period of the CPG oscillation gradually
decreased (cf. Fig. 3).

For every set of the parameter values (gapp1, gapp2) shown in Fig. 3, we calculated the iPRC and carried
out analysis of the fixed points of Eq. (18) while the values of ∆i

j and ∆e
j were taken from Table 2. The

nullclines and fixed points are displayed in Fig. 16 for three value pairs of (gapp1 and gapp2). As the panels
of this figure demonstrate, a decreasing duty factor of the CPG and shrinking tetrapod region (upper and
lower blue triangles in the two upper panels of Fig. 16) are concomitant. Moreover, if r0 = 2/3 (bottom
panel of Fig. 16), the tetrapod region altogether disappears (see also Appendix D). For larger values of r0
(Fig. 16, uppermost panel), there exists a stable fixed point in the tetrapod region, and a stable focus in
the tripod one (marked by black arrows in the panels of Fig. 16). As the duty factor decreases and the
tetrapod region shrinks, the stable fixed point in that region disappears via a saddle-node bifurcation. The
stable focus in the tripod region, however, survives. Thus, if the stepping starts with a low speed exerting a
tetrapod coordination pattern, then, by increasing the stepping speed, a transition to tripod occurs at some
speed.

In the considered case of a transition from tetrapod to tripod, the values of the phase shifts depend on
the duty factor r0, hence, on the parameters (gapp1, gapp2). This is not a necessary condition for a transition
to occur. We also analyzed the case, when the values of the phase shifts were constant (equal to the values
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Figure 16: Nullclines and fixed points of Eq. (18) with increasing stepping speed. The values of (gapp1, gapp2): (a)
(0.2463,0.1866)nS, (b) (0.2387,0.1889)nS, and (c) (0.2350,0.1900)nS. The stable fixed point in the tetrapod region
disappears (white arrow in (c)) with increasing speed, whereas the stable focus in the tripod region survives (black
arrow in (c)).

of ∆i
j and ∆e

j in Table 2 for (gapp1, gapp2) = (0.2463, 0.1866)nS). In this case the fixed point in the tetrapod
area disappears via saddle-node bifurcation at some r0 > 2/3. Recall that the tetrapod areas disappear at
r0 = 2/3 (cf. Appendix D).
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5 Discussion

In this paper, we report results on the analysis of the mechanisms underlying inter-segmental coordination
of stepping legs, as set out in the introduction. As a main tool, we used phase reduction models of an earlier
inter-segmental network model of stick insect locomotion (Daun-Gruhn and Tóth, 2011). The original
model has strong relation to experimental findings such as the pivotal role of centrally controlled CPGs
and inter-segmental synaptic connections between them (Borgmann et al., 2007, 2009, 2011), modulated by
peripheral sensory signals. Although itself a simplification of its biological counterpart, it could reproduce
basic coordination patterns and suggested a mechanism of transition between them (Daun-Gruhn et al.,
2011).

The importance of the peripheral sensory signals for coordinated walking was not only observed exper-
imentally, but was also emphasized in other models of six-legged locomotion (Dürr et al., 2004; Schilling
et al., 2013). However, due to the complexity of these systems, it is difficult to carry out a quantitative
analysis of the mechanisms underlying coordinated stepping. In contrast to other phase oscillator models of
six-legged locomotion (Collins and Stewart, 1993; Proctor and Holmes, 2010; Proctor et al., 2010; Aminzare
et al., 2018), we dealt, after reduction, with a simplified model that still captured the effects of the sensory
signals on inter-segmental coordination of the individual legs during walking.

In the process of reducing the inter-segmental network model, we first concentrated on the core of the
model: the segmental protractor-retractor CPG. We thus first reduced an individual segmental CPG to a
single phase oscillator. For this purpose, we calculated the iPRC for the retractor neuron of an isolated CPG.
The underlying CPG model (Daun et al., 2009) is an escape-type half-center oscillator (Wang and Rinzel,
1992; Zhang and Lewis, 2013) with almost zero iPRC in the active state and with phase delay or advance in
the quiescent state of the entrained CPG neuron. This indicates that the phase of the CPG oscillator, when
entrained by external input to the retractor neuron, can only be changed during the protraction phase, with
maximal entrainment towards its end. Insensitivity of the CPG during the stance (retraction) phase means
that when a leg is on a ground, the phase of the corresponding CPG changes with a constant speed (see
Fig. 10 bottom panel). This fact is also in agreement with the condition that legs on a firm ground move
with a constant phase difference due to mechanical constrains.

The segmental protractor-retractor CPG in the original model is a bistable system with a fast transition
between two states. As discussed by Cruse (2002), this type of half-center oscillators can effectively avoid
coactivation of antagonistic muscles. To reflect this property of the CPG, we had to explicitly separate the
protraction and the retraction phases in the reduced phase oscillator model. We chose the phase of the CPG
to be zero at the start of the retraction phase and normalized the oscillatory period to be one. Then the start
of the protraction became the phase r0, r0 being the duty factor of the periodic oscillation of an isolated
CPG.

In Section 4.1.2, we demonstrated that this definition of the swing and stance phases in the reduced phase
oscillator model is appropriate and justified since it leads to a quantitative agreement between the original
and the reduced model: they have the same timing of switching between stance and swing phases. On
the other hand, good agreement comes from a property of a half-center oscillator with fast-slow dynamics.
Indeed, the phase of an oscillator describes its state in the neighborhood of a periodic orbit (Fig 2 (b)). As
it was discussed by Somers and Kopell (1993, 1995) and by Izhikevich (2000), a relaxation oscillator with
fast threshold modulation can be successfully reduced to a phase oscillator if the ”compression condition” is
fulfilled. The inhibitory synaptic connections in the CPG are modeled as fast threshold modulation. Thus,
our definition of the retraction and protraction phase means that ϕ = r0 and ϕ = 0 when the periodic orbit
crosses the threshold value Vhs = −43mV in the function s∞(V ) (vertical dotted line in Fig 2 (b)). Since
the compression condition holds for the CPG, and the switching is fast, this definition is also valid in the
presence of an external input to the CPG.

Using the definition of the stance and swing phases, we derived the regions of existence of the coordination
patterns the three ipsilateral legs can produce, and illustrated them in the plane of the phase differences
θ1 and θ2 ((θ1, θ2) plane). The representation of coordination patterns as regions in the (θ1, θ2) plane,
being derived for ipsilateral legs, does not distinguish between the wave and the tetrapod coordination
patterns. However, our approach generalizes the ”classical” definition of coordination patterns, which uses
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rigid phase differences between the three ipsilateral stepping legs: (2/3, 1/3) for tetrapod and (1/2, 1/2) for
tripod (Graham, 1985; Wendler, 1965; Grabowska et al., 2012). Furthermore, we demonstrated that, when
projecting a three dimensional trajectory of the phase oscillator model Eq. (16) that reflects a coordination
pattern of stepping into the (θ1, θ2) plane, the projection of this trajectory remains within the region of
existence of the corresponding coordination pattern in the (θ1, θ2) plane. Moreover, the regions of existence
of the coordination patterns depend on the duty factor of the CPG: for r0 ≤ 2/3, the tetrapod regions
disappear but those of tripod survive. Obviously, this holds only if the swing phases of neighboring ipsilateral
legs do not overlap. However, the graphical representation of the coordination patterns clearly shows why a
six-legged animal walks in tripod, if its walking speed is high (the duty factor is shortened), as seen in the
stick insect (Wendler, 1965) and the fly (Wosnitza et al., 2013).

The analysis of the reduced phase oscillator model of two coupled segmental CPGs yielded profound and,
at the same time, somewhat surprising results. First of all, we found several types of solutions of the model
equations. Furthermore, we could show that the phase difference θ between segments is determined by the
duty factor r0 (which is determined by the central drive, thus by the parameters gapp) and the phase shift
∆e between the CPG activity of the preceding segment and the peripheral sensory signal arising from that
segment. Thus, for some suitable sets of parameter values, an inter-segmental signal enforces early or late
protraction phases in the subsequent segment that remain in a constant phase relation (see Fig. 10). This is
comparable to the coordination rules 2 and 3 by Cruse (e.g. Dürr et al., 2004). As a result of this interaction
between segments, a particular coordination pattern emerges in the whole system.

In Section 4.3, we demonstrated that the derived phase oscillator model Eq. (16) for the whole system
was capable of reproducing the basic coordination patterns and the transition between them in a similar
way as described in Daun-Gruhn and Tóth (2011). The reduced phase oscillator model of two coupled CPG
oscillators (Eq. 19) provides a clear and simple explanation for the transition between coordination patterns.
Such transition takes place if the system is pushed from the region of overlapping solutions into (or out
of) that of not overlapping ones by changing the phase shift ∆e. We used the averaged equation (18) in
the regions of existence of the different coordination patterns to find stable solutions of Eq. (16) associated
with the different coordination patterns. The two systems of model equations are not equivalent: (18) is
the simplification of the system (16). However, the stable solutions of the system (18) in the (θ1, θ2) plane
correspond to stable coordination patterns shown in Figs. 13 and 21. Moreover, the regions of existence of
the coordination patterns are the same in both cases. The fixed points of Eq. (18) change depending on the
phase shift ∆e

3. The shift of ∆e
3 affects the position and the stability of the fixed points, thus pushes the

system from one region of existence of the coordination patterns into another.
In physiological terms, this means that the animal can control coordination of the legs and initiate a switch

between coordination patterns using command neurons that affect the aforementioned sensory interneurons.
Therefore, the phase shifts arise as a combination of the delay in the neuro-muscular feedback loop and
a delay induced by descending commands. This phase-dependent control mechanism was suggested and
introduced by Daun-Gruhn and Tóth (2011). The ability of the animal to ”choose” the coordination pattern
and switch between them was observed in experiments. For example, first-instar stick insects prefer tripod,
whereas adult animals prefer tetrapod coordination patterns. The coordination pattern can also be changed
depending on the walking surface (e.g. on its slope) (Grabowska et al., 2012).

We also considered various values of the parameters gapp. Applying them led to different oscillatory
frequencies and duty factors in the activity of the CPG neurons. We changed the values of gapp such that
the period and the duty factor of the CPG gradually decreased. We showed that by increasing the speed
of stepping, the tetrapod region shrank and, simultaneously, the stable fixed point in the tetrapod region
disappeared via a saddle-node bifurcation. Thus, a transition from tetrapod to tripod could be triggered
by increasing stepping speed. This finding of ours is in a very good agreement with the the experimental
observations (e.g. Graham, 1972). Moreover, coexistence of tripod and tetrapod coordination patterns at
the same speed ranges was also observed in stick insect (Grabowska et al., 2012) and fly walking (Wosnitza
et al., 2013; Mendes et al., 2013).

A transition between coordination patterns through a saddle-node bifurcation occurring with increasing
stepping speed was also observed by Aminzare et al. (2018). However, their phase oscillator model of
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cockroach locomotion also exhibits other bifurcations. This model has a different structure of the inter-
segmental coupling. As it was initially constructed for modeling cockroach locomotion, it does not include
proprioceptive feedback. Unlike stick insects the fast-walking cockroach is expected to rely more on the
patterns centrally produced by the CPGs, rather than on sensory feedback (Couzin-Fuchs et al., 2015; Ayali
et al., 2015). The study of the differences in inter-leg coupling and the generation of coordination patterns
of walking among various insect species therefore remains a challenging task.

In this modeling study, several assumptions were made. One of them is the assumption that the kinematics
of the legs are completely driven by the segmental CPGs. Another one concerns the form of the sensory
signal y. In general, this signal represents loading and unloading of the leg and should therefore also change
its form depending on actual kinematics of the leg. Thus, excitatory as well as inhibitory influences (∆e,∆i)
would then change in accordance with it. For example, the component of the phase shift caused by the
neuro-muscular mechanisms will increase with increasing the walking speed. Moreover, the sensory signal
also appears to depend on the kinematics of the contralateral legs. To study these phenomena will be the
topic of future research.

In summary, the main merit and novelty of the work presented here is that it has provided a comprehensive
and systematic analysis of the mechanisms of inter-segmental coordination of 3 ipsilateral stepping legs.

The method of analysis used in this work, i.e. phase reduction methods together with the determination
of the regions of existence for the different coordination patterns can also be extended to larger systems
that include contralateral legs. Building upon the results of this study, we intend to perform comparative
investigations of reduced models of different six-legged animals, such as those of stick insects, cockroaches,
and flies. The results of such an analysis might reveal common mechanisms of general importance for
understanding animal locomotion.
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A Parameters of CPG neurons

All 6 CPG neurons have the same parameters, and their values are the same, except for those of the gapps.
The CPG neurons are labeled by the numbers 1 to 6 as shown in Fig. 1. Parameters of the system Eq. (1):

Parameters of INaP : gNa = 10.0nS, ENa = 50.0mV, Vhm = −37.0mV, γm = −0.1667mV−1, Vhh =
−30.0mV, γh = 0.1667mV−1, Vhτ = −30.0mV, γτ = 0.0833mV−1, ε = 0.0023ms.

Parameters of IL: gL = 2.8 nS, EL = −65.0mV; and Cm = 0.9154pF.
Parameters of Iapp: Eapp = 0.0mV. The values of the parameters gapp1 and gapp2 are given in Table 4.

Table 4: Parameters of the driving current Iapp.

CPG neuron retractor protractor
labels C1,C3,C5 C2,C4,C6

r0 T0,ms gapp1, nS gapp2, nS

0.6658 395.9 0.2350 0.1900
0.7530 477.37 0.2500 0.1855
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B Synaptic connections

Here, in Tables 5 and 6 the synaptic connections in the inter-segmental network model are exhibited.

Table 5: Table of synaptic connections from CPG neuron Ci in column i to CPG neuron Cj in row j. The numbers
in the cells are the connection types. Their details are shown in the next table.

CPG neurons C1 C2 C3 C4 C5 C6

C1 1 2,3
C2 1
C3 2,3 1
C4 1
C5 2,3 1
C6 1

Table 6: Synaptic connection types. Connection type 1 is inhibitory and establishes the mutually inhibitory synaptic
connections needed between the neurons of a CPG. Connection types 2 and 3 are inter-segmental connections via
sensory interneurons. Connection type 2 is excitatory, whereas connection type 3 is inhibitory. gsyn is the conductance,
Esyn the reversal potential of the synapse; Vhs and γs are the parameters of the activation of the synapse (Eq. (3)); ry
is the phase shift between the inter-segmental and the peripheral sensory signal; and a is an adjustable amplification
factor.

Type gsyn, Esyn, Vhs, γs, ry a
nS mV mV mV−1

1 1.0 -80.0 -43.0 -10 N/A N/A
2 0.2 0.0 -43.0 -10 0.6 6.0
3 0.1 -80.0 -43.0 -10 0.6 3.0

C Phase response curve of a CPG

The phase response curve (PRC) of a single CPG can be calculated by perturbing the system (Eq. (1)
without external input) at different phases of the oscillatory period and finding the resulting phase shift
elicited by the perturbation. In Fig. 17, an example of a PRC of a single CPG is illustrated.

If the perturbations to an oscillatory system become infinitesimally small at every phase of the oscillatory
period, the resulting curve of responses to these perturbations is then called the infinitesimal phase response
curve (iPRC) of the system. Its value, at every phase of the oscillatory period, can be calculated directly by
solving the adjoint problem derived from the system of equations that describe the oscillator (Ermentrout,
1996; Hoppensteadt and Izhikevich, 1997; Izhikevich, 2007). This approach goes back to Malkin (1949, 1959).
He considered a periodic oscillator Ẋ = f(X) forced by a time-dependent input p(t), that obeys the following
equation.

Ẋ = f(X) + ǫp(t), (23)

where ǫ≪ 1. He formulated the following theorem:

Theorem 1 Malkin’s theorem. If the unperturbed system Eq. (23) (ǫ = 0) has a limit cycle with period T ,
then the phase of the system (23) is described by the equation

ϕ̇ = 1 + ǫZ(ϕ) · p(t), (24)
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Figure 17: Calculation of PRC for a single CPG is done using the perturbation method. The top panel shows the
membrane potential (V1) of a CPG neuron (Eq. (1)). The bottom panel displays the periodic unperturbed orbit and
its perturbation in the V −h plane. Red line: unperturbed (free running) system, blue line: perturbed system, empty
square: before application of the perturbation, filled square: after application of the perturbation. The points with
zero phase are labeled with ∗ in the unperturbed case and with a circle in the perturbed system. To get a clear effect,
the strength of perturbation was chosen to be high (10.0mV).

where a T -periodic function Z is the solution to the linear adjoint equation

Z ′ = −
(

Df
)⊤

· Z, (25)

subject to the normalization condition

1

T

∫ T

0

Z(t) · f(x(t))dt = 1. (26)

Here, Z is the iPRC and x(t) is the solution to the unperturbed system Eq. (23) (ǫ = 0) on the limit cycle.

If the system Ẋ = f(X) has a periodic limit cycle with period T , then by rescaling the time, we can
transform this equation system to a boundary value problem (BVP) of the following form

{

ẋ− Tf(x) = 0,
x(0)− x(1) = 0,

(27)

where the solution x(t) is a periodic function of period 1.
To find the iPRC of a single CPG, the system (Eq. (1) without external input) and the corresponding

adjoint problem (Eq. (25)) were transformed to a BVP of the form Eq. (27) and solved together with the
normalization conditions (Eq. (26)) using AUTO (Doedel et al., 2007). The iPRC calculated thus is a vector
of the same size as the system Eq. (1). The iPRC is almost zero in the active state of the retractor neuron
of the CPG, and non-zero during its quiescent phase during which the leg is in the swing phase. This phase
is thus prone to perturbations by an external input, especially just before its end.

D Regions of existence of coordination patterns

We displayed several coordination patterns in Fig. 18. Depending on the sequence of stepping legs (front-
middle-hind or hind-middle-front), there can be two different types of the tetrapod coordination pattern.
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They are denoted in Fig. 18 as tetrapod 1 and tetrapod 2. In our model, we consider ipsilateral legs (e.g.
only R1, R2, and R3), only. In this case, only a possible overlap of the swing phases of the front and hind
leg will distinguish the tripod coordination pattern from the tetrapod one. Thus, by determining the phase
differences between the CPGs at which the swing phases of the legs overlap, we can determine the type of
the coordination pattern.
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Figure 18: Tripod and tetrapod coordination patterns. R1, R2, R3: right front, middle, and hind leg; L1, L2, L3:
left front, middle, and hind leg. In the panels on the left hand side, the black bars denote swing phases of the legs.
The panels on the right hand side show the phase relations between the legs: lines of the same color connect the legs
that have simultaneous swing phases. Tetrapod 1 and tetrapod 2 differ in the direction of swing phase sequence, as
indicated by arrows.

We consider first the phase relations between two CPGs (Fig. 19). As described in Sections 3.4 and 4.1,
the CPG switches from protraction to retraction at phase ϕ = 0, and from retraction to protraction at phase
ϕ = r0. Here, r0 is the duty factor of an isolated CPG. As pointed out earlier, the kinematics of the legs are
determined by the activity of the CPG neurons. Hence, the stance and swing phase of the legs became the
intervals 0 ≤ ϕ < r0 and r0 ≤ ϕ < 1, respectively (see Fig. 8). The relative position of the swing phases of
two CPGs with phases ϕj and ϕk with and without overlap are illustrated in Fig. 19 (a) and (b). The phase
relation of two CPGs in the (ϕk, ϕj) plane are displayed in Fig. 19 (c). Note that the variables ϕj and ϕk

in this figure are periodic with a normalized period 1. From Fig. 19, we conclude that the swing phases of
the CPGs won’t overlap, if 1 − r0 ≤ θ ≤ r0 (the blue areas), where θ = ϕk − ϕj . By contrast, if θ < 1 − r0
or θ > r0, which is the same as |θ| < 1− r0, then the swing phases of two oscillators will overlap. In Fig. 19,
deeper shades of red mean larger overlap. Perfect overlap occurs along the diagonal (θ = 0).

The condition for the existence of the tetrapod coordination pattern is that the swing phases of any two
legs should not overlap. Taking into account the definition of θ1 = ϕ1 − ϕ2, and θ2 = ϕ3 − ϕ2, we can write

1− r0 ≤ θ1 ≤ r0,
1− r0 ≤ θ2 ≤ r0,
1− r0 ≤ θ2 − θ1 ≤ r0.

(28)

For the tripod coordination pattern, as mentioned before, the swing phases of the hind leg and the front
leg overlap. Thus the last condition in Eq. (28) will be substituted by the condition for overlap:

|θ2 − θ1| < 1− r0. (29)
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Figure 19: Phase relations between the activities of two CPGs with and without overlapping swing phases. (a) and
(b): Illustration of the relative position of the swing phases (black bars). (c): The phase differences between the
activities of the two CPG oscillators with phases ϕk and ϕj in the (ϕk, ϕj) plane. The swing phases constitute the
transparent gray rectangle (r0, 1] × (r0, 1] of the (ϕk, ϕj) plane. The dashed lines parallel to the diagonal are the
lines of constant phase difference: θ = ϕk − ϕj = const. In the blue regions, the swing phases of the two oscillatory
activities with a constant phase difference do not overlap. The regions of overlap are drawn in varying shades of
red. The deeper the shade of the red color, the greater is the overlap. Note that the region boundaries reflect the
periodicity of phase variables ϕk and ϕj .

Putting the conditions Eq. (28) and Eq. (29) together, we obtain the regions of existence of the two
different coordination patterns, as illustrated in Fig. 20. The solutions to Eq. (18) in the lower blue region
correspond to the coordination pattern tetrapod 1, whereas those in the upper blue triangle to the coordi-
nation pattern tetrapod 2 (see Fig. 18). The solutions in the shaded red region correspond to the tripod
coordination pattern. The swing phases increasingly overlap towards the center (indicated by deeper red
color in Fig. 19). Perfect overlap is achieved on the diagonal red dashed line. The white area surrounding
the regions of existence of the coordination patterns represents solutions in which the swing phases of neigh-
boring legs overlap. If the stance phase of the CPG oscillator shortens, that is the duty factor r0 decreases,
the regions of existence of tetrapod shrink. When the condition 1 − r0 = 2r0 − 1 (cf. the definition of the
region borders in Fig. 20) is fulfilled, i.e. r0 = 2/3, the tetrapod solution becomes extinct.

To demonstrate the meaning of the regions of coordination patterns we projected the trajectories of
the stable tetrapod and tripod coordination patterns obtained by simulation of the non-averaged phase
oscillators system Eq. (16) in Section 4.3 onto the (θ1, θ2) plane as shown in Fig. 21. One can see that the
trajectories for a given coordination pattern do not leave the corresponding region in the plane. Note that
the trajectories in the (θ1, θ2) coordinate system can cross and overlap since they are projections of the three
dimensional system Eq. (16) onto a two dimensional surface.

E The structure of the bifurcation diagram

The averaged coupling functions (Eq. (14) and (15)) can be approximated as sums

Hi(θ,∆i) =gi
Nj
∑

j=1

s(θ + τj)y(∆
i + τj)F

i(τj)∆τ, (30)

He(θ,∆e) =ge
Nj
∑

j=1

s(θ + τj)y(θ +∆e + τj)F
e(τj)∆τ, (31)

where τj ∈ [0, 1], ∆τ is a small increment, and the functions F i(τ) = −Z(τ)
[

V (τ) − Ei
]

and F e(τ) =
−Z(τ) [V (τ) − Ee] are depicted in Fig. 22 (a).
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Figure 20: Illustration of the regions of existence of the coordination patterns in the (θ1, θ2) plane (torus). The blue
triangles are the regions of existence of tetrapod coordination patterns of type 1 and type 2 (see Fig. 18). The shaded
red area is the region of existence of the tripod coordination pattern, where the swing phases of the front and hind leg
overlap. The increasingly deep red color indicates increasing overlap. On the diagonal red dashed line, the overlap
is perfect. The corresponding relations between θ1 and θ2 on the region boundaries (gray dotted lines) are given by
Eq. (28).

We introduce a new variable α = 1 − τ (or τ = −α due to periodicity). The functions F e,i(−α) have a
large amplitude for 0 < α < α∗, where α∗ ≪ 1 and F e,i(−α∗) = 0. The functions F e,i change the sign for
α∗ < α < 1 − r0 (see Fig. 22 (a) inset panel). For simplicity we assume that F i,e(−α) = 0 for r0 < α ≤ 1,
s(ϕ) = 1 for 0 < ϕ ≤ r0, and y(ϕ) = 1 for 0 < ϕ ≤ ry.

For a given value of α the term in the sum in Eq. (31) is not zero if both s(θ−α) 6= 0 and y(θ+∆e−α) 6= 0.
In the (∆e, θ) plane (torus) these conditions are fulfilled inside the regions depicted in Fig. 22 (b) with dashed
red and solid blue borders, respectively. The regions are filled with light gray color and the intersections
of these regions are drawn with dark gray color. Summing up all intersection regions over the values of α
within the range [0, 1− r0], where F

e(−α) 6= 0, gives the regions whose boundaries are shown in Fig. 22 (b)
by dash-dotted black lines. Thus, inside this region He(θ,∆e) 6= 0.

The sum Eq. (31), which is the convolution of three functions s, y and F e, is positive for 0 < α < α∗

due to the large positive amplitude of F e. By contrast, within the range where the larger amplitude is not
included (α∗ < α < 1 − r0), the sum is negative. As α∗ → 0 the regions in the (∆e, θ) plane where He is
positive or negative approach the ones depicted in Fig. 22 (c) with blue and red colors, respectively. The
white region is where He(θ,∆e) ≈ 0.

Similarly, the function Hi(θ,∆i) is a convolution of the functions s(θ − α), y(∆i − α), and F i(−α) (see
Eq. (30)). Since ∆i = 1/8, the condition y(∆i − α) 6= 0 reduces the range of α to [0,∆i]. Thus, from the
condition s(θ − α) 6= 0 we find the range 0 ≤ θ ≤ r0 + ∆i where Hi(θ) 6= 0. Again the large negative
amplitude of the function F i(−α) dominates for 0 < α < α∗. Therefor, for the limit as α∗ = 0, the function
Hi is negative for 0 < θ ≤ r0 and positive for r0 < θ ≤ r0 +∆i (see the right side of Fig. 22 (c)).

Taking into account that |He| > |Hi| and that the functions He and Hi in Eq. (20) have negative sign, we
can find the approximate expressions for the stable and unstable branches in the bifurcation diagram Fig. 11
(a) for the averaged phase difference equation of the uni-directionally coupled oscillators model (Eq. (20)):

• The central stable branch (the solution types 2 and 3) and the oblique unstable solution branch are
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Figure 21: Projections of the trajectories of the stable tetrapod (left panels) and tripod (right panels) coordination
patterns shown in Fig. 13 onto the (θ1, θ2) plane. (a) and (b): Time courses of ϕ1 (red), ϕ2 (green), and ϕ3 (blue)
of the non-averaged system Eq. (16). (c) and (d): Time courses of the phase differences θ1 = ϕ1 − ϕ2 (red) and
θ2 = ϕ3 − ϕ2 (blue) calculated by subtraction of the appropriate phase angles from the upper panels. (e) and (f):
Projection of the trajectories (black) onto the (θ1, θ2) plane enlarged around the corresponding region. The blue and
red areas are the regions of the tetrapod and tripod coordination patterns, respectively (see Fig. 20).

the boundaries of the condition y(θ +∆e) 6= 0: θ +∆e = 1 and θ + ∆e = ry. Stability of the former
branch is provided by the negative Hi (cf. Fig. 6).

• The horizontal stable (the solution type 1) and unstable branch are the boundaries of the condition
s(θ) 6= 0: θ = 0 and θ = r0.

• In the upper left corner of the bifurcation diagram Fig. 11 (a) (θ ∈ [r0, 1] and ∆e ∈ [0, 1 − r0]) the
function Hi dominates. Thus, the branch of the solution type 4 is the boundary of the condition
s(θ) 6= 0. The unstable branch above is bounded by the condition s(θ − (r0 +∆i)) 6= 0: θ = r0 +∆i.
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